Batteries

greg334

Veteran Expediter
OK going to replace the 3 (or 4) batteries I have on this truck but was warned that the nice Optima batteries I want may not work and I am not going to do the walmart thing with this beast.

So for those who have recently replace their batteries, what did you buy?
 

davekc

Senior Moderator
Staff member
Fleet Owner
I am assuming because they are deep cells. All of our truck batteries are Interstate. Not sure if they are the best, but we have had good luck with them after replacing the manufacturer batteries. We find those are good for about two years, and then they fail a load test.







Davekc
owner
22 years
PantherII
EO moderator
 

rode2rouen

Expert Expediter
I recently replaced all 4 of my batteries. My friendly neighborhood International dealer had 925CCA batts for $74.95, (IIRC) They are their top of the line.

I looked at Optima, but for the price, I couldn't justify the $$$$


Rex
 

rollnthunder

Expert Expediter
Six months ago i was a manager at a major autoparts store and i can tell you i would never ever buy or own a optima battery.The return rate was very high it did not matter if it was red,yellow or blue.My customers are using them in everything from boats to drag cars and they just didnt seem to hold up.The warranty is nice but it doesnt do you any good when your in a pilot parking lot.I have 3 Napa commercial batteries and have no problem turning over my Series50 detroit or running my fridge and micro and tv.I believe they are 1000 cca each or close to that.If you are having a starting problem check the battery jumper cables the ones that connect from battery to battery.I had a bad experience that i thought was a bad battery or starter and it ended up being those cables.One cable was bad so i really was only running on one or 2 of the batteries.Parts cost me $60 at freightshaker dealer.I would buy batteries from a reputable dealer and one that sells alot of the commercial batteries so this way you get fresh ones.Also look on the side of the battery there is a code it will be a letter with a number(A6) stands for Jan of 06 that is when the battery was built.
 

greg334

Veteran Expediter
Thanks all.

I got to add, I had great luck with Optimas but my brother in laws can't keep them in any vehicle - both have had nothign but problems. I think that it has to do with the way they are charged - but that is off topic.

Ok International, Interstate (who I can't find a dealer in my area) and NAPA. I will check all of them out.

Oh I am going to spend some money on new cables when I change the batteries. it is not that these are too bad (7 years old on a truck?) but I want to move the battery box for the truck circuit and add another box with a couple more batteries - so new cables are the only way I can do this.

Does anyone change out cables after so many years as part of PM?
 

rollnthunder

Expert Expediter
My cables are only 6 years old and they caused me all kinds of problems i had the alt tested the starter tested and finally one of the service managers said to check out the jumper cables on the batteries well they are sealed so i just bought them and replaced them.I then took the old one and cut it open and found all kinds of corrosion inside.There was very little showing on the connector by the battery.Also try to find a Interstate dealer i had there brand in my Western Star and never ever had a problem.Plus interstate you can get warranty at any interstate dealer nation wide.Napa maybe a little harder to find.Also what i did i got a monster battery selector and put inline so i can select to use 1,2 or all then it also has off.Perko makes one its mainly used for marine but it works great for trucks.I think i paid under $50 for this online shop around i found it range from 50 to 80
 

Marty

Veteran Expediter
I believe that if you charge Optima batteries with more than a 10amp charger it will ruin these batteries.
 

rollnthunder

Expert Expediter
Not true i can say about 60% of the batteries that got returned went bad from being drained dead and we all know that it can happen on a semi very easily,all it takes is to leave the inverter on or something dumb.I have completely drained my commercial batteries from napa atleast 6 times and i just had them all tested and it hasnt effected them a bit.Now it might down the road maybe next year or something but the optimas brought in where dead and we would put it in a $5000 dollar charger and it would monitor how it would accept the charge and if it didnt like what it was seeing then its no good.
 

simon says

Veteran Expediter
Charter Member
I will assume that you want the Optima for starting and deep cycle use? If you want for instance to use the Optima for running electrical components from an inverter, then you want the Yellow top dual purpose type (D31 T or A). These can be charged by alternator system... I was thinking of one, just for inverter use, but have not done so yet. Besides, I am not sure one would be adequate.

I have a 4 batt. system, divided by a Sure-shot 1815-400A solenoid. I run all components- including inverter and roof-fan or air heater off two batteries. The other two batts. are for starting only. Interior lights are connected to the two starter batts, but not a big deal (could change). I will always have power to start, and worse case is coffee pot, or fan, or something, will stop & re-charge is necessary. The 1815 will let either side charge- so if you're running down road with inverter on and using power, system will re-charge component batteries. So far, just good name brand batt. with long reserve capacity is the best for inverter use...
 

flatbedin

Seasoned Expediter
You might want to check and see if you have a Trojan Battery dealer locally. Their batteries are designed especially for commercial vehicles, and the life span and warranties are much greater than Interstate, optima, and Deka.

I believe they have both Gel core and wet core batteries.

They are a little more expensive than the average battery, but cheaper isn't always better either.

Good Luck.
 

dieseldoctor1

Expert Expediter
I was going to give you a link to this info but they are reworking their website and this info is not on there right now that I could find. It is probably more than you want to know about batteries but is real good info. Also this website shows how to properly connect multiple batteries. Very good info.

http://www.batteriesnorthwest.com/techinfo.html

The subject of batteries could take up many pages. All we have room for here is a basic overview of batteries commonly used with photovoltaic power systems. These are nearly all various variations of Lead-Acid batteries. For a very brief discussion on the advantages and disadvantages of these and other types of batteries, such as NiCad, NiFe (Nickel-Iron), etc. go to our Batteries for Deep Cycle Applications page. These are sometimes referred to as "deep discharge" or "deep cell" batteries. The correct term is deep cycle

What is a Battery?
A battery, in concept, can be any device that stores energy for later use. A rock, pushed to the top of a hill, can be considered a kind of battery, since the energy used to push it up the hill (chemical energy, from muscles or combustion engines) is converted and stored as potential kinetic energy at the top of the hill. Later, that energy is released as kinetic and thermal energy when the rock rolls down the hill. Common use of the word, "battery," however, is limited to an electrochemical device that converts chemical energy into electricity, by use of a galvanic cell. A galvanic cell is a fairly simple device consisting of two electrodes (an anode and a cathode) and an electrolyte solution. Batteries consist of one or more galvanic cells.

A battery is an electrical storage device. Batteries do not make electricity, they store it, just as a water tank stores water for future use. As chemicals in the battery change, electrical energy is stored or released. In rechargeable batteries this process can be repeated many times. Batteries are not 100% efficient - some energy is lost as heat and chemical reactions when charging and discharging. If you use 1000 watts from a battery, it might take 1200 watts or more to fully recharge it. Slower charging and discharging rates are more efficient. A battery rated at 180 amp-hours over 6 hours might be rated at 220 AH at the 20-hour rate, and 260 AH at the 48-hour rate. Typical efficiency in a lead-acid battery is 85-95%, in alkaline and NiCad battery it is about 65%.

Practically all batteries used in PV and al but the smallest backup systems are Lead-Acid type batteries. Even after over a century of use, they still offer the best price to power ratio. A few systems use NiCad, but we do not recommend them except in cases where extremely cold temperatures (-50 F or less) are common. They are expensive to buy, and very expensive to dispose of due the the hazardous nature of Cadmium. We have had almost no direct experience with the NiFe (alkaline) batteries, but from what we have learned from others we do not not recommend them - one major disadvantage is that there is a large voltage difference between the fully charged and discharged state. Another problem is that they are very inefficient - you lose from 30-40% in heat just in charging and discharging them. Many inverters and charge controls have a hard time with them. It appears that the only current source for new cells is from Hungary.

It is important to note here that ALL of the batteries commonly used in deep cycle applications are Lead-Acid. This includes the standard flooded (wet) batteries, gelled, and AGM. They all use the same chemistry, although the actual construction of the plates etc can vary considerably. NiCads, Nickel-Iron, and other types are found in some systems, but are not common due to their expense and/or poor efficiency.

Major Battery Types
Batteries are divided in two ways, by application (what they are used for) and construction (how they are built). The major applications are automotive, marine, and deep-cycle. Deep-cycle includes solar electric (PV), backup power, and RV and boat "house" batteries. The major construction types are flooded (wet), gelled, and AGM (Absorbed Glass Mat). AGM batteries are also sometimes called "starved electrolyte" or "dry", because the fiberglass mat is only 95% saturated with Sulfuric acid and there is no excess liquid.

Flooded may be standard, with removable caps, or the so-called "maintenance free" (that means they are designed to die one week after the warranty runs out). All gelled are sealed and a few are "valve regulated", which means that a tiny valve keeps a slight positive pressure. Nearly all AGM batteries are sealed valve regulated (commonly referred to as "VRLA" - Valve Regulated Lead-Acid). Most valve regulated are under some pressure - 1 to 4 psi at sea level.

Lifespan of Batteries
The lifespan of a battery will vary considerably with how it is used, how it is maintained and charged, temperature, and other factors. In extreme cases, it can vary to extremes - we have seen L-16's killed in less than a year by severe overcharging, and we have a large set of surplus telephone batteries that sees only occasional (5-10 times per year) heavy service that are now over 25 years old. We have seen gelled cells destroyed in one day when overcharged with a large automotive charger. We have seen golf cart batteries destroyed without ever being used in less than a year because they were left sitting in a hot garage without being charged. Even the so-called "dry charged" (where you add acid when you need them) have a shelf life of at most 18 months, as they are not totally dry (actually, a few are, but hard to find, the vast majority are shipped with damp plates).

These are some general (minimum - maximum) typical expectations for batteries if used in deep cycle service:

Starting: 3-12 months
Marine: 1-6 years
Golf cart: 2-6 years
AGM deep cycle: 4-7 years
Gelled deep cycle: 2-5 years
Deep cycle (L-16 type etc): 4-8 years
Rolls-Surrette premium deep cycle: 7-15 years
Industrial deep cycle (Crown and Rolls 4KS series): 10-20+ years
Telephone (float): 1-20 years. These are usually special purpose "float service", but often appear on the surplus market as "deep cycle". They can vary considerably, depending on age, usage, care, and type.
NiFe (alkaline): 3-25 years
NiCad: 1-20 years
Back to top

Starting, Marine, and Deep-Cycle Batteries
Starting (sometimes called SLI, for starting, lighting, ignition) batteries are commonly used to start and run engines. Engine starters need a very large starting current for a very short time. Starting batteries have a large number of thin plates for maximum surface area. The plates are composed of a Lead "sponge", similar in appearance to a very fine foam sponge. This gives a very large surface area, but if deep cycled, this sponge will quickly be consumed and fall to the bottom of the cells. Automotive batteries will generally fail after 30-150 deep cycles if deep cycled, while they may last for thousands of cycles in normal starting use (2-5% discharge).

Deep cycle batteries are designed to be discharged down as much as 80% time after time, and have much thicker plates. The major difference between a true deep cycle battery and others is that the plates are SOLID Lead plates - not sponge. Unfortunately, it is often impossible to tell what you are really buying in some of the discount stores or places that specialize in automotive batteries. The popular golf cart battery is generally a "semi" deep cycle - better than any starting battery, better than most marine, but not as good as a true deep cycle solid Lead plate, such the L-16 or industrial type. However, because the golf cart (T-105, US-2200, GC-4 etc) batteries are so common, they are usually quite economical for small to medium systems.

Many (most?) Marine batteries are usually actually a "hybrid", and fall between the starting and deep-cycle batteries, while a few (Rolls-Surrette and Concorde, for example) are true deep cycle. In the hybrid, the plates may be composed of Lead sponge, but it is coarser and heavier than that used in starting batteries. It is often hard to tell what you are getting in a "marine" battery, but most are a hybrid. "Hybrid" types should not be discharged more than 50%. Starting batteries are usually rated at "CCA", or cold cranking amps, or "MCA", Marine cranking amps - the same as "CA". Any battery with the capacity shown in CA or MCA may not be a true deep-cycle battery. It is sometimes hard to tell, as the terms marine and deep cycle are sometimes overused. CA and MCA ratings are at 32 degrees F, while CCA is at zero degree F. Unfortunately, the only positive way to tell with some batteries is to buy one and cut it open - not much of an option.

Using a deep cycle battery as a starting battery
There is generally no problem with this, providing that allowance is made for the lower cranking amps compared to a similar size starting battery. As a general rule, if you are going to use a true deep cycle battery (such as the Concorde) also as a starting battery, it should be oversized about 20% compared to the existing or recommended starting battery group size to get the same cranking amps. That is about the same as replacing a group 24 with a group 31. With modern engines with fuel injection and electronic ignition, it generally takes much less battery power to crank and start them, so raw cranking amps is less important than it used to be. On the other hand, many cars, boats, and RV's are more heavily loaded with power sucking "appliances", such as megawatt stereo systems etc. that are more suited for deep cycle batteries. We have been using the Concorde SunExtender AGM batteries in most of our vehicles for some time now with no problems.

Battery Construction Materials
Nearly all large rechargeable batteries in common use are Lead-Acid type. (There are some NiCads in use, but for most purposes the very high initial expense, and the high expense of disposal, does not justify them). The acid is typically 30% Sulfuric acid and 70% water at full charge. NiFe (Nickel-Iron) batteries are also available - these have a very long life, but rather poor efficiency (60-70%) and the voltages are different, making it more difficult to match up with standard 12v/24/48v systems and inverters. The biggest problem with NiFe batteries is that you may have to put in 100 watts to get 70 watts of charge - they are much less efficient than Lead-Acid. What you save on batteries you will have to make up for by buying a larger solar panel system. NiCads are also inefficient - typically around 65% - and very expensive. However, NiCads can be frozen without damage, so are sometimes used in areas where the temperatures may fall below -50 degrees F. Most AGM batteries will also survive freezing with no problems, even though the output when frozen will be little or nothing.

Industrial deep cycle batteries
Sometimes called "fork lift", "traction" or "stationary" batteries, are used where power is needed over a longer period of time, and are designed to be "deep cycled", or discharged down as low as 20% of full charge (80% DOD, or Depth of Discharge). These are often called traction batteries because of their widespread use in forklifts, golf carts, and floor sweepers (from which we get the "GC" and "FS" series of battery sizes). Deep cycle batteries have much thicker plates than automotive batteries.

Plate Thickness
Plate thickness (of the Positive plate) matters because of a factor called "positive grid corrosion". This ranks among the top 3 reasons for battery failure. The positive (+) plate is what gets eaten away gradually over time, so eventually there is nothing left - it all falls to the bottom as sediment. Thicker plates are directly related to longer life, so other things being equal, the battery with the thickest plates will last the longest.

Automotive batteries typically have plates about .040" (40/1000") thick, while forklift batteries may have plates more than 1/4" (.265" for example in the Rolls-Surrette) thick - almost 7 times as thick as auto batteries. The typical golf cart will have plates that are around .07 to .11" thick. The Concorde AGM's are .115", The Rolls-Surrette L-16 type (CH460) is .150", and the US Battery and Trojan L-16 types are .090".

Most industrial deep-cycle batteries use Lead-Antimony plates rather than the Lead-Calcium used in AGM or gelled deep-cycle batteries. The Antimony increases plate life and strength, but increases gassing and water loss. This is why most industrial batteries have to be checked often for water level if you do not have Hydrocaps. The self discharge of batteries with Lead-Antimony plates can be high - as much as 1% per day on an older battery. A new AGM typically self-discharges at about 1-2% per month, while an old one may be as much as 2% per week.

Sealed batteries
Sealed batteries are made with vents that (usually) cannot be removed. The so-called Maintenance Free batteries are also sealed, but are not usually leak proof. Sealed batteries are not totally sealed, as they must allow gas to vent during charging. If overcharged too many times, some of these batteries can lose enough water that they will die before their time. Most smaller deep cycle batteries (including AGM) use Lead-Calcium plates for increased life, while most industrial and forklift batteries use Lead-Antimony for greater plate strength.

A few industrial batteries have special caps that convert the Hydrogen and Oxygen back into water, reducing water loss by up to 95%. The popular "HydroCaps" that we sell for flooded batteries do the same job for conventional ("wet"), golf cart, and fork-lift batteries. Lead-Antimony batteries have a much higher self-discharge rate (2-10% per week) than Lead or Lead-Calcium (1-5% per month), but the Antimony improves the mechanical strength of the plates, which is an important factor in electric vehicles. They are generally used where they are under constant or very frequent charge/discharge cycles, such as fork lifts and floor sweepers. The Antimony increases plate life at the expense of higher self discharge. If left for long periods unused, these should be trickle charged to avoid damage from sulfation - but this applies to ANY battery.

As in all things, there are trade offs. The Lead-Antimony types have a very long lifespan, but higher self discharge rates.

Battery Size Codes
Batteries come in all different sizes. Many have "group" sizes, which is based upon the physical size and terminal placement. It is NOT a measure of battery capacity. Typical BCI codes are group U1, 24, 27, and 31. Industrial batteries are usually designated by a part number such as "FS" for floor sweeper, or "GC" for golf cart. Many batteries follow no particular code, and are just manufacturers part numbers. Other standard size codes are 4D & 8D, large industrial batteries, commonly used in solar electric systems

Some common battery size codes used are: (ratings are approximate)
U1 34 to 40 Amp hours 12 volts
Group 24 70-85 Amp hours 12 volts
Group 27 85-105 Amp hours 12 volts
Group 31 95-125 Amp hours 12 volts
4-D 180-215 Amp hours 12 volts
8-D 225-255 Amp hours 12 volts
Golf cart & T-105 180 to 220 Amp hours 6 volts
L-16 340 to 415 Amp hours 6 volts

Gelled electrolyte
Gelled batteries, or "Gel Cells" contain acid that has been "gelled" by the addition of Silica Gel, turning the acid into a solid mass that looks like gooey Jell-O. The advantage of these batteries is that it is impossible to spill acid even if they are broken. However, there are several disadvantages. One is that they must be charged at a slower rate (C/20) to prevent excess gas from damaging the cells. They cannot be fast charged on a conventional automotive charger or they may be permanently damaged. This is not usually a problem with solar electric systems, but if an auxiliary generator or inverter bulk charger is used, current must be limited to the manufacturers specifications. Most better inverters commonly used in solar electric systems can be set to limit charging current to the batteries.

Some other disadvantages of gel cells is that they must be charged at a lower voltage (2/10th's less) than flooded or AGM batteries. If overcharged, voids can develop in the gel which will never heal, causing a loss in battery capacity. In hot climates, water loss can be enough over 2-4 years to cause premature battery death. It is for this and other reasons that we no longer sell any of the gelled cells except for replacement use. The newer AGM (absorbed glass mat) batteries have all the advantages (and then some) of gelled, with none of the disadvantages.

AGM, or Absorbed Glass Mat Batteries
A newer type of sealed battery uses "Absorbed Glass Mats", or AGM between the plates. This is a very fine fiber Boron-Silicate glass mat. These type of batteries have all the advantages of gelled, but can take much more abuse. We sell the Concorde (and Lifeline, made by Concorde) AGM batteries. These are also called "starved electrolyte", as the mat is about 95% saturated rather than fully soaked. That also means that they will not leak acid even if broken.

AGM batteries have several advantages over both gelled and flooded, at about the same cost as gelled:
Since all the electrolyte (acid) is contained in the glass mats, they cannot spill, even if broken. This also means that since they are non-hazardous, the shipping costs are lower. In addition, since there is no liquid to freeze and expand, they are practically immune from freezing damage.

Nearly all AGM batteries are "recombinant" - what that means is that the Oxygen and Hydrogen recombine INSIDE the battery. These use gas phase transfer of oxygen to the negative plates to recombine them back into water while charging and prevent the loss of water through electrolysis. The recombining is typically 99+% efficient, so almost no water is lost.

The charging voltages are the same as for any standard battery - no need for any special adjustments or problems with incompatible chargers or charge controls. And, since the internal resistance is extremely low, there is almost no heating of the battery even under heavy charge and discharge currents. The Concorde (and most AGM) batteries have no charge or discharge current limits.

AGM's have a very low self-discharge - from 1% to 3% per month is usual. This means that they can sit in storage for much longer periods without charging than standard batteries. The Concorde batteries can be almost fully recharged (95% or better) even after 30 days of being totally discharged.

AGM's do not have any liquid to spill, and even under severe overcharge conditions hydrogen emission is far below the 4% max specified for aircraft and enclosed spaces. The plates in AGM's are tightly packed and rigidly mounted, and will withstand shock and vibration better than any standard battery.

Even with all the advantages listed above, there is still a place for the standard flooded deep cycle battery. AGM's will cost 2 to 3 times as much as flooded batteries of the same capacity. In many installations, where the batteries are set in an area where you don't have to worry about fumes or leakage, a standard or industrial deep cycle is a better economic choice. AGM batteries main advantages are no maintenance, completely sealed against fumes, Hydrogen, or leakage, non-spilling even if they are broken, and can survive most freezes. Not everyone needs these features.

Temperature Effects on Batteries
Battery capacity (how many amp-hours it can hold) is reduced as temperature goes down, and increased as temperature goes up. This is why your car battery dies on a cold winter morning, even though it worked fine the previous afternoon. If your batteries spend part of the year shivering in the cold, the reduced capacity has to be taken into account when sizing the system batteries. The standard rating for batteries is at room temperature - 25 degrees C (about 77 F). At approximately -22 degrees F (-27 C), battery AH capacity drops to 50%. At freezing, capacity is reduced by 20%. Capacity is increased at higher temperatures - at 122 degrees F, battery capacity would be about 12% higher.

Battery charging voltage also changes with temperature. It will vary from about 2.74 volts per cell (16.4 volts) at -40 C to 2.3 volts per cell (13.8 volts) at 50 C. This is why you should have temperature compensation on your charger or charge control if your batteries are outside and/or subject to wide temperature variations. Some charge controls have temperature compensation built in (such as Morningstar) - this works fine if the controller is subject to the same temperatures as the batteries. However, if your batteries are outside, and the controller is inside, it does not work that well. Adding another complication is that large battery banks make up a large thermal mass.

Thermal mass means that because they have so much mass, they will change internal temperature much slower than the surrounding air temperature. A large insulated battery bank may vary as little as 10 degrees over 24 hours internally, even though the air temperature varies from 20 to 70 degrees. For this reason, external (add-on) temperature sensors should be attached to one of the POSITIVE plate terminals, and bundled up a little with some type of insulation on the terminal. The sensor will then read very close to the actual internal battery temperature.

Even though battery capacity at high temperatures is higher, battery life is shortened. Battery capacity is reduced by 50% at -22 degrees F - but battery LIFE increases by about 60%. Battery life is reduced at higher temperatures - for every 15 degrees F over 77, battery life is cut in half. This holds true for ANY type of Lead-Acid battery, whether sealed, gelled, AGM, industrial or whatever. This is actually not as bad as it seems, as the battery will tend to average out the good and bad times. Click on the small graph to see a full size chart of temperature vs capacity.

One last note on temperatures - in some places that have extremely cold or hot conditions, batteries may be sold locally that are NOT standard electrolyte (acid) strengths. The electrolyte may be stronger (for cold) or weaker (for very hot) climates. In such cases, the specific gravity and the voltages may vary from what we show.

Cycles vs Life
A battery "cycle" is one complete discharge and recharge cycle. It is usually considered to be discharging from 100% to 20%, and then back to 100%. However, there are often ratings for other depth of discharge cycles, the most common ones are 10%, 20%, and 50%. You have to be careful when looking at ratings that list how many cycles a battery is rated for unless it also states how far down it is being discharged. For example, one of the widely advertised telephone type (float service) batteries have been advertised as having a 20-year life. If you look at the fine print, it has that rating only at 5% DOD - it is much less when used in an application where they are cycled deeper on a regular basis. Those same batteries are rated at less than 5 years if cycled to 50%. For example, most golf cart batteries are rated for about 550 cycles to 50% discharge - which equates to about 2 years.

Battery life is directly related to how deep the battery is cycled each time. If a battery is discharged to 50% every day, it will last about twice as long as if it is cycled to 80% DOD. If cycled only 10% DOD, it will last about 5 times as long as one cycled to 50%. Obviously, there are some practical limitations on this - you don't usually want to have a 5 ton pile of batteries sitting there just to reduce the DOD. The most practical number to use is 50% DOD on a regular basis. This does NOT mean you cannot go to 80% once in a while. It's just that when designing a system when you have some idea of the loads, you should figure on an average DOD of around 50% for the best storage vs cost factor. Also, there is an upper limit - a battery that is continually cycled 5% or less will usually not last as long as one cycled down 10%. This happens because at very shallow cycles, the Lead Dioxide tends to build up in clumps on the the positive plates rather in an even film. The graph above shows how lifespan is affected by depth of discharge. The chart is for a Concorde Lifeline battery, but all lead-acid batteries will be similar in the shape of the curve, although the number of cycles will vary.

Battery Voltages
All Lead-Acid batteries supply about 2.14 volts per cell (12.6 to 12.8 for a 12 volt battery) when fully charged. Batteries that are stored for long periods will eventually lose all their charge. This "leakage" or self discharge varies considerably with battery type, age, & temperature. It can range from about 1% to 15% per month. Generally, new AGM batteries have the lowest, and old industrial (Lead-Antimony plates) are the highest. In systems that are continually connected to some type charging source, whether it is solar, wind, or an AC powered charger this is seldom a problem. However, one of the biggest killers of batteries is sitting stored in a partly discharged state for a few months. A "float" charge should be maintained on the batteries even if they are not used (or, especially if they are not used). Even most "dry charged" batteries (those sold without electrolyte so they can be shipped more easily, with acid added later) will deteriorate over time. Max storage life on those is about 2-3 years.

Batteries self-discharge faster at higher temperatures. Lifespan can also be seriously reduced at higher temperatures - most manufacturers state this as a 50% loss in life for every 15 degrees F over a 77 degree cell temperature. Lifespan is increased at the same rate if below 77 degrees, but capacity is reduced. This tends to even out in most systems - they will spend part of their life at higher temperatures, and part at lower.

Myth: The old myth about not storing batteries on concrete floors is just that - a myth. This old story has been around for 100 years, and originated back when battery cases were made up of wood and asphalt. The acid would leak from them, and form a slow-discharging circuit through the now acid-soaked and conductive floor.
State of Charge
State of charge, or conversely, the depth of discharge (DOD) can be determined by measuring the voltage and/or the specific gravity of the acid with a hydrometer. This will NOT tell you how good (capacity in AH) the battery condition is - only a sustained load test can do that. Voltage on a fully charged battery will read 2.12 to 2.15 volts per cell, or 12.7 volts for a 12 volt battery. At 50% the reading will be 2.03 VPC (Volts Per Cell), and at 0% will be 1.75 VPC or less. Specific gravity will be about 1.265 for a fully charged cell, and 1.13 or less for a totally discharged cell. This can vary with battery types and brands somewhat - when you buy new batteries you should charge them up and let them sit for a while, then take a reference measurement. Many batteries are sealed, and hydrometer reading cannot be taken, so you must rely on voltage. Hydrometer readings may not tell the whole story, as it takes a while for the acid to get mixed up in wet cells. If measured right after charging, you might see 1.27 at the top of the cell, even though it is much less at the bottom. This does not apply to gelled or AGM batteries.

"False" Capacity
A battery can meet all the tests for being at full charge, yet be much lower than it's original capacity. If plates are damaged, sulfated, or partially gone from long use, the battery may give the appearance of being fully charged, but in reality acts like a battery of much smaller size. This same thing can occur in gelled cells if they are overcharged and gaps or bubbles occur in the gel. What is left of the plates may be fully functional, but with only 20% of the plates left... Batteries usually go bad for other reasons before reaching this point, but it is something to be aware of if your batteries seem to test OK but lack capacity and go dead very quickly under load.

On the table below, you have to be careful that you are not just measuring the surface charge. To properly check the voltages, the battery should sit at rest for a few hours, or you should put a small load on it, such as a small automotive bulb, for a few minutes. The voltages below apply to ALL Lead-Acid batteries, except gelled. For gel cells, subtract .2 volts. Note that the voltages when actually charging will be quite different, so do not use these numbers for a battery that is under charge.

Amp-Hour Capacity
All deep cycle batteries are rated in amp-hours. An amp-hour is one amp for one hour, or 10 amps for 1/10 of an hour and so forth. It is amps x hours. If you have something that pulls 20 amps, and you use it for 20 minutes, then the amp-hours used would be 20 (amps) x .333 (hours), or 6.67 AH. The accepted AH rating time period for batteries used in solar electric and backup power systems (and for nearly all deep cycle batteries) is the "20 hour rate". This means that it is discharged down to 10.5 volts over a 20 hour period while the total actual amp-hours it supplies is measured. Sometimes ratings at the 6 hour rate and 100 hour rate are also given for comparison and for different applications. The 6-hour rate is often used for industrial batteries, as that is a typical daily duty cycle. Sometimes the 100 hour rate is given just to make the battery look better than it really is, but it is also useful for figuring battery capacity for long-term backup amp-hour requirements.

Why amp-hours are specified at a particular rate:
Because of something called the Peukert Effect. The Peukert value is directly related to the internal resistance of the battery. The higher the internal resistance, the higher the losses while charging and discharging, especially at higher currents. This means that the faster a battery is used (discharged), the LOWER the AH capacity. Conversely, if it is drained slower, the AH capacity is higher. This is important because some folks have chosen to rate their batteries at the 100 hour rate - which makes them look a lot better than they really are. Here are some typical battery capacities from the manufacturers data sheets:

Battery Type 100 hour rate 20 hour rate 8
Trojan T-105 250 AH 225 AH n/a
US Battery 2200 n/a 225 AH 181 AH
Concorde PVX-6220 255 AH 221 AH 183 AH
Surrette S-460 (L-16) 429 AH 344 AH 282 AH
Trojan L-16 400 AH 360 AH n/a
Surrette CS-25-PS 974 AH 779 AH 639 AH

State of Charge
Here are no-load typical voltages vs state of charge
(figured at 10.5 volts = fully discharged, and 77 degrees F). Voltages are for a 12 volt battery system. For 24 volt systems multiply by 2, for 48 volt system, multiply by 4. VPC is the volts per individual cell - if you measure more than a .2 volt difference between each cell, you need to equalize, or your batteries are going bad, or they may be sulfated. These voltages are for batteries that have been at rest for 3 hours or more. Batteries that are being charged will be higher - the voltages while under charge will not tell you anything, you have to let the battery sit for a while. For longest life, batteries should stay in the green zone. Occasional dips into the yellow are not harmful, but continual discharges to those levels will shorten battery life considerably. It is important to realize that voltage measurements are only approximate. The best determination is to measure the specific gravity, but in many batteries this is difficult or impossible. Note the large voltage drop in the last 10%.

State of Charge 12 Volt battery Volts per Cell
100% 12.7 2.12
90% 12.5 2.08
80% 12.42 2.07
70% 12.32 2.05
60% 12.20 2.03
50% 12.06 2.01
40% 11.9 1.98
30% 11.75 1.96
20% 11.58 1.93
10% 11.31 1.89
0 10.5 1.75

Battery Charging
Battery charging takes place in 3 basic stages: Bulk, Absorption, and Float.
Bulk Charge - The first stage of 3-stage battery charging. Current is sent to batteries at the maximum safe rate they will accept until voltage rises to near (80-90%) full charge level. Voltages at this stage typically range from 10.5 volts to 15 volts. There is no "correct" voltage for bulk charging, but there may be limits on the maximum current that the battery and/or wiring can take.

Absorption Charge: The 2nd stage of 3-stage battery charging. Voltage remains constant and current gradually tapers off as internal resistance increases during charging. It is during this stage that the charger puts out maximum voltage. Voltages at this stage are typically around 14.2 to 15.5 volts.

Float Charge: The 3rd stage of 3-stage battery charging. After batteries reach full charge, charging voltage is reduced to a lower level (typically 12.8 to 13.2) to reduce gassing and prolong battery life. This is often referred to as a maintenance or trickle charge, since it's main purpose is to keep an already charged battery from discharging. PWM, or "pulse width modulation" accomplishes the same thing. In PWM, the controller or charger senses tiny voltage drops in the battery and sends very short charging cycles (pulses) to the battery. This may occur several hundred times per minute. It is called "pulse width" because the width of the pulses may vary from a few microseconds to several seconds. Note that for long term float service, such as backup power systems that are seldom discharged, the float voltage should be around 13.02 to 13.20 volts.
Chargers: Most garage and consumer (automotive) type battery chargers are bulk charge only, and have little (if any) voltage regulation. They are fine for a quick boost to low batteries, but not to leave on for long periods. Among the regulated chargers, there are the voltage regulated ones, such as Iota Engineering and Todd, which keep a constant regulated voltage on the batteries. If these are set to the correct voltages for your batteries, they will keep the batteries charged without damage. These are sometimes called "taper charge" - as if that is a selling point. What taper charge really means is that as the battery gets charged up, the voltage goes up, so the amps out of the charger goes down. They charge OK, but a charger rated at 20 amps may only be supplying 5 amps when the batteries are 80% charged. To get around this, Statpower (and maybe others?) have come out with "smart", or multi-stage chargers. These use a variable voltage to keep the charging amps much more constant for faster charging.
We carry the Iota Engineering battery chargers and the Statpower Truecharge "smart" chargers.

Charge controllers
A charge controller is a regulator that goes between the solar panels and the batteries. Regulators for solar systems are designed to keep the batteries charged at peak without overcharging. Meters for Amps (from the panels) and battery Volts are optional with most types. Some of the various brands and models that we use and recommend are listed below. Note that a couple of them are listed as "power trackers" - for a full explanation of this, see our page on "Why 75 watts does not equal 75 watts".

Most of the modern controllers have automatic or manual equalization built in, and many have a LOAD output. There is no "best" controller for all applications - some systems may need the bells and whistles of the more expensive controls, others may not.

These are some of the charge controllers that we recommend at this time for all systems. Exact model will depend on application and system size and voltage.
Trace C12, C35, C40, C60
Morningstar Prostar and SunSaver (All)
Pulse
Outback Power MX60
RV Power Products (Solar Boost)

Using any of these will almost always give better battery life and charge than "on-off" or simple shunt type regulators

Battery Charging Voltages and Currents:
Most flooded batteries should be charged at no more than the "C/8" rate for any sustained period. "C/8" is the battery capacity at the 20-hour rate divided by 8. For a 220 AH battery, this would equal 26 Amps. Gelled cells should be charged at no more than the C/20 rate, or 5% of their amp-hour capacity. The Concorde AGM batteries are a special case - the can be charged at up the the Cx4 rate, or 400% of the capacity for the bulk charge cycle. However, since very few battery cables can take that much current, we don't recommend you try this at home. To avoid cable overheating, you should stick to C/4 or less.

Charging at 15.5 volts will give you a 100% charge on Lead-Acid batteries. Once the charging voltage reaches 2.583 volts per cell, charging should stop or be reduced to a trickle charge. Note that flooded batteries MUST bubble (gas) somewhat to insure a full charge, and to mix the electrolyte. Float voltage for Lead-Acid batteries should be about 2.15 to 2.23 volts per cell, or about 12.9-13.4 volts for a 12 volt battery. At higher temperatures (over 85 degrees F) this should be reduced to about 2.10 volts per cell.

Never add acid to a battery except to replace spilled liquid. Distilled or deionized water should be used to top off non-sealed batteries. Float and charging voltages for gelled batteries are usually about 2/10th volt less than for flooded to reduce water loss. Note that many shunt-type charge controllers sold for solar systems will NOT give you a full charge - check the specifications first. To get a full charge, you must continue to apply a current after the battery voltage reaches the cutoff point of most of these type of controllers. This is why we recommend the charge controls and battery chargers listed in the sections above. Not all shunt type controllers are 100% on or off, but most are.

Flooded battery life can be extended if an equalizing charge is applied every 10 to 40 days. This is a charge that is about 10% higher than normal full charge voltage, and is applied for about 2 to 16 hours. This makes sure that all the cells are equally charged, and the gas bubbles mix the electrolyte. If the liquid in standard wet cells is not mixed, the electrolyte becomes "stratified". You can have very strong solution at the top, and very weak at the bottom of the cell. With stratification, you can test a battery with a hydrometer and get readings that are quite a ways off. If you cannot equalize for some reason, you should let the battery sit for at least 24 hours and then use the hydrometer. AGM and gelled should be equalized 2-4 times a year at most - check the manufacturers recommendations, especially on gelled.

Battery Aging
As batteries age, their maintenance requirements change. This means longer charging time and/or higher finish rate (higher amperage at the end of the charge). Usually older batteries need to be watered more often. And, their capacity decreases.

Mini Factoids
Nearly all batteries will not reach full capacity until cycled 10-30 times. A brand new battery will have a capacity of about 5-10% less than the rated capacity.

Batteries should be watered after charging unless the plates are exposed, then add just enough water to cover the plates. After a full charge, the water level should be even in all cells and usually 1/4" to 1/2" below the bottom of the fill well in the cell (depends on battery size and type).

In situations where multiple batteries are connected in series, parallel or series/parallel, replacement batteries should be the same size, type and manufacturer (if possible). Age and usage level should be the same as the companion batteries. Do not put a new battery in a pack which is more than 3 months old or has more than 75 cycles. Either replace with all new or use a good used battery. For long life batteries, such as the Surrette and Crown, you can have up to a one year age difference.

The vent caps on flooded batteries should remain on the battery while charging. This prevents a lot of the water loss and splashing that may occur when they are bubbling.

When you first buy a new set of flooded (wet) batteries, you should fully charge and equalize them, and then take a hydrometer reading for future reference. Since not all batteries have exactly the same acid strength, this will give you a baseline for future readings.

When using a small solar panel to keep a float (maintenance) charge on a battery (without using a charge controller), choose a panel that will give a maximum output of about 1/300th to 1/1000th of the amp-hour capacity. For a pair of golf cart batteries, that would be about a 1 to 5 watt panel - the smaller panel if you get 5 or more hours of sun per day, the larger one for those long cloudy winter days in the Northeast.

Lead-Acid batteries do NOT have a memory, and the rumor that they should be fully discharged to avoid this "memory" is totally false and will lead to early battery failure.

Inactivity can be extremely harmful to a battery. It is a VERY poor idea to buy new batteries and "save" them for later. Either buy them when you need them, or keep them on a continual trickle charge. The best thing - if you buy them, use them.

Only clean water should be used for cleaning the outside of batteries. Solvents or spray cleaners should not be used.

Some Peukert Exponent values (not complete, just for info). We don't have a lot of data. Trojan T-105 = 1.25; Optima 750S = 1.109; US Battery 2200 = 1.20.

Please feel free to email us with any comments about this page or batteries in general.



We have received the Yahoo Stores top 5-Star rating for our online Webstore for customer satisfaction


Northern Arizona Wind & Sun, Inc
Toll free Telephone: (USA only) 800 383-0195 (Flagstaff)
Technical Support: 623 877-2317 (Phoenix) or 928 526-8017 (Flagstaff) FAX: 928 527-0729
Mailing and shipping address: 2725 E Lakin Dr, #2, Flagstaff AZ 86004
Webstore for PRICING and online ordering, 24 hours/7 days a week
Email for information on Order Status: Sales
For technical support, website comments, or questions email us at: [email protected]
© 1997-2003 Northern Arizona Wind & Sun, Inc. and the respective manufacturers and may not be used without permission.
Page last updated: Friday March 28, 2003


Dieseldoctor
 

LDB

Veteran Expediter
Retired Expediter
Ok, for those of us with a non-scientific, Readers Digest type nature what is the best way to go for a truck with a good size sleeper? I'd like to eventually add batteries and a splitter or isolator for the sleeper only but for now just have what came on the truck.

Leo Bricker, 73's K5LDB, OOIDA Life Member 677319
Owner, Panther trucks 5508, 5509, 5641
Highway Watch Participant, Truckerbuddy
EO Forum Moderator
----------
Support the entire Constitution, not just the parts you like.
 

greg334

Veteran Expediter
DieselDoc,

Thanks.

I have a rather lengthy write up on battery technology but this filled the gaps I was looking for.

Leo,

I know that the batteries are on the way out and want to have two power systems for the truck, main or starting and sleeper (actually need to get the reefer battery changed soon too). I am ending up with using my generator every third day to start my truck because I turn most everything off at 9 or 10 and have a 7 amp load for what is left on. I don’t like to idle during the night and run the truck for 30 minutes at a time to charge things up.

I will get new batteries in January due to my budget and start putting together the sleeper system once the parts have arrived. I started ordering the small stuff, like the EL lights and some of the relays.

I will also install an “APU†using a Kubota 6.5 HP engine (if I can find a 14 HP engine the better but this is the only one I can find that fits my budget) with either my remaining 250 amp Leece-Neville alternator or a new 200 amp Delco, I am going to use the APU for heat and dc power for now with ac power and A/C being added later. I can’t afford the $5000 plus systems out there and don’t see the advantage of paying all that money when I can put one together for under $1500.

By the way, the 6.5 will work for either dc or ac with A/C running but I can’t have my microwave and my A/C running at the same time according to all calculations and info from Kubota and the generator people. 14 HP will have an increase in fuel consumption but I can run everything at the same time.

The issue I have with the relay or solenoid system is forgetting to either turn it off or turn it on. So I bought and used for a while Blue Sea Systems ACL or automatic control relay which connects the battery to the main system when the voltage reaches 12.4 (adjustable). It has a manual connection feature too. This kept me out of trouble and kept the battery charged.

For the new system on this truck I will have the battery bank (3 maybe 4), I will use a manual battery switch (Blue Sea Systems) to connect it to the main system when needed and use a Balmar Max Charge regulator with the APU to ensure the max life out of the batteries. I had one of these regulators and it was great.

Once that is done, I am adding a second inverter (small one) for the computer, adding the LED interior lights, moving the fuse panel, adding a switch panel for the microwave, adding a 12 volt to 12 volt converter to eliminate spikes for my really important things and rewiring the ac in the sleeper for safety – I just don’t like the wiring with the lack of grommets and such.

Now this sounds like an over kill but got to tell you that I want to use the power system to power the radio equipment I have and in order for me to do this right, I have to have a good, clean, safe and stable power source.

I hope this helps others with ideas on power solutions,
 

lanier1

Seasoned Expediter
My batteries recently went bad. I pulled them out and they were Auto Zone's finest (he said with sarcasm}. But, after comparing prices and checking the date on my old ones I learned they were just over 3 years old so I bought Auto Zone.
 

Turtle

Administrator
Staff member
Retired Expediter
I've been messing with batteries for years. I'm in a Sprinter, and am in it for 2-3 months at a time, so it's not unlike a good sized sleeper in a big truck, or dry camping, for that matter, as I don't have shore power. I'll add a generator next Spring and a rooftop AC.

Currently, I have three hybrid "deep cycle" Group 24 batteries that were quick and dirty installs to get me on the road. 80 amp hours each, and they have performed exactly as badly as I thought they would. :)

Because of the almost daily discharging on batteries in applications like these, and most hybrid batteries are good for about 300 cycles, after a little over a year these now give me about an hour and a half between charges, and that's less than a 20 amp draw. At 20 amps (usually 10 or so), these should (and used to) last me between 12 and 24 hours.

In a couple of weeks I'll be replacing these with either four 12 volt Concord Lifeline (GPL-4DL) or Sun Extender (PVX-2120L) batteries. Lifelines and Sun Extenders are essentially identical, except for the warranty, and the Sun Extenders are a little cheaper. These are 210 amp hour size 4-D batteries, which is one size down from the 8-D batteries. They weigh in at about 135 pounds each.

That will give me 840 amp hours. If I constantly run everything in here, except for the microwave, 840 amp hours will give me 26 hours of non-stop use (pulling a constant 25 amps). But in reality, the way I run things, which is roughly 15 amps (180 watts at the inverter) when I'm awake and playing on the computer or watching TV, and then 8 amps or so when I'm sleeping, I should get about 75 hours between charges.

And if I'm at home with the van parked or it's in the shop for any length of time, with just the fridge running, I'll get 168 hours, or exactly 7 days (which is one reason why I went with at least 840 amp hours worth of batteries).

The key to batteries like these are to get sealed batteries, so you don't have to worry about filling them with water, and more importantly, you don't have to worry about them venting gas that you'd be breathing in. There are some sealed golf cart batteries that are another option. Golf cart batteries are 6 volts, so you'll need two of each to make a 12 volt battery. When you compare 6 volt golf cart (or fork lift or floor scrubber) batteries to 12 volt batteries of the same amp hour capacity, the main difference is the overall life of the batteries, as golf cart batteries will generally last longer. The 12 volt Concord batteries should last from 5-7 years, and comparable 6 volt batteries should last 6-9 years (in a house battery bank type of application such as we're talking about here).

These are high end, true deep cycle batteries, used for military and commercial aircraft, as we all those with wind or solar power who are living off the grid. And they are not cheap. But they are very well made and should last a long time. Best price I've found on the Sun Extenders is $339.97 and on the Lifelines is $379.97, both at www.thesolar.biz/

They are shipped truck freight, and you can greatly reduce that amount by picking up the batteries at whatever local freight terminal you want them shipped to. I don't think picking up a skidload of 540 pounds of batteries is gonna be a problem here. hehe

Of course, 540 pounds of on-board batteries is an issue when it comes to empty weight and freight, but I have that covered, as well. Incidentally, especially if you are in a van, if you're going to use that much battery weight, you'll want to put half the weight on one side of the vehicle and the the other half on the other side. Otherwise you'll give the suspension system a permanent tilt. In here on the driver's side I'll have me, the fridge and one battery, and then the other three batteries on the other side of the van, to keep the weight evenly distributed.

Bottom line, 4 of these batteries, plus a good battery isolator (not a simple solenoid switch, please) and a $200 battery monitor is gonna run me about $1800 including cables to install everything. Plus whatever the freight is, which should be under $150. (I also have a $1000, 3000 watt pure sine wave inverter). So, it's about 2 grand for house power that, when divided out over 5 years, is about $35 a month. I'll take an electric bill like that, and have maintenance free, worry free electric in the van for the extended periods I want.

For many people, just one of these 210 amp hour batteries will suffice. For others, the cheapest Wal Mart marine hybrid is fine, and 80 amp hours will be plenty.

Down around mid-page there is a calculator that will give you a ballpark figure of how many hours a given battery or battery bank will last under a given load.

http://www.dcacpowerinverters.com/inverterguide.htm

Once you know how many daily watt hours or amp hours you use, and how long you will go between charges, you'll know how many amp hours you need in a battery.
 

EASYTRADER

Expert Expediter
Hino batteries definately aren't for highway use. I noticed that about a month after getting on the road. It seemed to me that my APU was always running in "Batery Charging Mode". So on a whim and after having to get a jump start, I stopped at the first WalMart I saw.
I purchased three Walmart Deep Cycle, Marine/RV batteries. Along with a few other items, I beleive the Batteries were $59 bucks each. I installed them myself becuase I paid way to much money for my truck to have a $10 buck an hour knucklehead work on on it. The installation took
me about 1 and 1/2 hours to complete.

I have had the Wal-Mart Deep Cycles for two weeks now. I couldn'r be happier, my APU now cycles on and off to run the Climate Control only.
Which means it mostly stays off. So for less than the cost of one optima battery I have three Wally_World batteries. So if they last me a year or two I'll be happy, I beleive they have a three year warranty but I bought them as an experiment anyway.

I also looked at Sears Die-Hard batteries which have a 180 amp hour rating instead of the 150 on the Wal-mart Battery, The Sears battery was $77.00 each, I opted for Walmart as opposed to Sears because the Sears batteries were too large for my battery box.
 

bryan

Veteran Expediter
Hi
I like NAPA's.I clean all body grounds and the connection to the starter every 6 months.Also spray terminals with battery terminal protectant.This coating turns clear when there is a loss connection.So all I have to do is look at the terminals to be sure they are making good contact.Good luck.
 

nightcreacher

Veteran Expediter
LEO,it all depends on how much you want to spend.
Is it profitable to buy a $100000 truck and install a $70000 sleeper,I trade every 3 years,motels are cheaper,the resale on that $170000 unit sucks,and the maid makes the beds at motel
If your going buy batteries,doesnt matter the manufacture,just need to be commercial battery with enough cold cranking amps,they will all last at least 3 years,and I say never NEVER just replace 1 battery at a time,the older ones will drain the new one

MERRY CHRISTMAS HAPPY NEW YEAR
 
Top